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Comments on Solution

1 Co-integration and Pricing
[1] Both systems have p = 3.

Model (1.1) has r = 2 and therefore p− r = 1 stochastic trend. We can choose

β =

 1 0

−1
4

1

0 3
4

 and β⊥ =

 1

4

−16
3

 .

Model (1.2) has r = 1 and therefore p− r = 2 stochastic trends. We can choose

b =

 1

0

−1

 and b⊥ =

 1 0

0 1

1 0

 .

[2] Following the arguments in the lecture note, the solution should find the MA-

solution for the stationary process β′Xt, i.e.

%t = α (β′α)
−1
(

t−1∑
i=0

(Ir + β′α)
i
β′εt−i + (Ir + β′α)

t
β′X0

)
.

Similarly for St.

[3] The two systems have three co-integrating relationships. Following the lecture note,

the solution should argue that they are candidates for trading pairs. Whenever the

deviation from equilibrium is non-zero (or significantly non-zero) the agent could

buy the underpriced stock and sell the overpriced stock and wait for reversal to

equilibrium. More details could be given.

[4] Now a system of p = 4 variables, Zt = (x1,t, x3,t, y1,t, y3,t)
′, is considered.

[4.1] In this case r = 2. We can choose

β∗ =


1 0
3
16

0

0 1

0 −1

 and β∗⊥ =


1 0

−16
3

0

0 1

0 1

 .
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[4.2] Next, we are informed that x1,t − y3t is also stationary. We can choose

β∗ =


1 0 1
3
16

0 0

0 1 0

0 −1 −1

 and β∗⊥ =


1

−16
3

1

1

 .

[5] Let y3,t denote the market portfolio and consider the system for Yt = (y1,t, y2,t, y3,t)
′: ∆y1,t

∆y2,t

∆y3,t

 =

 a1

a2

a3


 1

0

−1


′ y1,t−1

y2,t−1

y3,t−1

+

 e1,t

e2,t

e3,t

 , and O =

 O11 O12 O13

O21 O22 O23

O31 O32 O33

 .

[5.1] The short-run conditional pricing beta for the first asset is

B1
t =

covt−1(∆y1,t,∆y3,t)

Vt−1(∆y3,t)
=

covt−1(e1,t, e3,t)

Vt−1(e3,t)
=
O13
O33

.

In this case the conditional variance is constant and B1
t is not time-varying.

By conditioning in the Gaussian distribution, the model y1,t, y2,t | y3,t is

(
∆y1,t

∆y2,t

)
= ω∆y3,t +

(
a1 − ωa3
a2 − ωa3

) 1

0

−1


′ y1,t−1

y2,t−1

y3,t−1

+

(
e∗1,t
e∗2,t

)
,

where ω = O13/O33 = B1
t can be easily estimated.

The OLS estimator in the linear regression

∆y1,t = λ∆y3,t + νt,

is given by

λ̂ =
1
T

∑T
t=1 ∆y1,t∆y3,t

1
T

∑T
t=1(∆y3,t)

2
=

1
T

∑T
t=1(a1b

′Yt−1 + e1,t)(a3b
′Yt−1 + e3,t)

1
T

∑T
t=1(a3b

′Yt−1 + e3,t)2
.

The probability limit is given by

λ̂→P λ =
E(a1b

′Yt−1 + e1,t)(a3b
′Yt−1 + e3,t)

E(a3b′Yt−1 + e3,t)2
=
a1a3Σbb +O13
a23Σbb +O33

,

where Σbb is the variance of b′Yt. For λ̂ to be a consistent estimator of B1,t,

the requirement is that a3 = 0, such that the omitted variable, b′Yt−1, is

uncorrelated with the regressor, ∆y3,t.

[5.2] The solution should explain that according to the CAPM model the pricing

beta, B1
t , is the relevant measure of risk in a well-diversified portfolio. The

investor is compensated for this systematic risk, while the idiosyncratic risk

can be diversified away and is therefore not priced according to the CAPM.
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[5.3] Because it is market neutral, a pairs-trading portfolio has a zero beta, and in

terms of CAPM it should therefore pay the risk-free rate. One main difference

between CAPM and the pairs-trading strategy is that CAPM is an equilibrium

pricing theory, while pairs-trading strategies tries to identify prices out of

equilibrium.

[6] In the extended case

Ot =

 O11,t O12,t O13,t

O21,t O22,t O23,t

O31,t O32,t O33,t


=

 σ1,t 0 0

0 σ2,t 0

0 0 σ3,t


 1 ρ12 ρ13

ρ12 1 ρ23
ρ13 ρ23 1


 σ1,t 0 0

0 σ2,t 0

0 0 σ3,t


=

 σ21,t ρ12σ1,tσ2,t ρ13σ1,tσ3,t

ρ12σ1,tσ2,t σ22,t ρ23σ2,tσ3,t

ρ13σ1,tσ3,t ρ23σ2,tσ3,t σ23,t

 .

Here the conditional pricing beta is

B1
t =

O13,t
O33,t

= ρ13
σ1,t
σ3,t

,

which is time varying.

[7] The estimates of the model are

The solution should also report estimated conditional variances, covariances and

correlations, noting that the latter are constant by construction.
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The estimated time-varying betas are gives as

The simple multivariate ARCH allows estimation of the time varying betas. The

solution could discuss that a model with constant conditional correlations and

ARCH(1) specifications for the conditional variances may be too simple to model

time-varying betas. With B1
t = ρ13σ1,t/σ3,t, all time variation comes from the

relative conditional standard deviations, and they will typically not show very per-

sistent movements. As a result, fluctuations in betas implied by the model are

rather transitory.

2 Multivariate GARCH-X
[8] Drift criterion:

[8.1] It holds, that

E (1 + v′tvt|vt−1 = v) = 1 + E
(
Y ′t Yt + x2t |vt−1 = v

)
= 1 + tr (Ωt) + σ2x

=
(
ω21 + ω22 + α2y

2
2 + α1y

2
1 + 2γx2

)
+ σ2x

= c+ α2y
2
2 + α1y

2
1 + 2γx2

= c+ v′Av ≤ c+ max (α1, α2, 2γ) v′v.

[8.2] Hence max (α1, α2, 2γ) < 1 is a suffi cient condition.

[8.3] As Y ′t Yt + x2t = y21t + y22t + x2t the covariance does not change this.

[9] Testing:

[9.1] It follows that

`T (θ) = −1

2

T∑
t=1

(
log det (Ωt) + tr

{
YtY

′
t Ω
−1
t

})
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with ∂`T (θ) /∂γ = 1
2

∑T
t=1

x2t−1
σ21t

[y21t/σ
2
1t − 1] +

x2t−1
σ22t

[y21t/σ
2
2t − 1], as

∂ [log det (Ωt)] /∂γ = ∂
[
log det

(
D2
t

)]
/∂γ = ∂

[
log σ21t + log σ22t

]
/∂γ

=
[
1/σ21t + 1/σ22t

]
x2t−1

∂
[
tr
{
YtY

′
t Ω
−1
t

}]
/∂γ = ∂

[
y21t/σ

2
1t + y22t/σ

2
2t

]
/∂γ

= −
[
y21t/σ

4
1t + y22t/σ

4
2t

]
x2t−1

Hence

∂`T (θ) /∂γ|θ=θ0 =
1

2

T∑
t=1

x2t−1
σ21t

[
z21t − 1

]
+
x2t−1
σ22t

[
z22t − 1

]
With ξt = x2t−1

(
1
σ21t
, 1
σ22t

)
vec (ztz

′
t − I2), it follows that ξt is a MGD wrt.

Ft−1 = {(xt−k, Yt−k) , k ≥ 1} and

E

({
x2t−1
σ21t

[
z21t − 1

]
+
x2t−1
σ22t

[
z22t − 1

]}2
|Ft−1

)
= 2

x4t−1
σ41t

+ 2
x4t−1
σ42t

.

And, moreover

T−1
T∑
t=1

(
x4t−1
σ41t

+ 2
x4t−1
σ42t

)
→P E

(
x4t−1
σ41t

+ 2
x4t−1
σ42t

)
= m

where m < ∞ if γ0 > 0 since
(
x2t−1/σ

2
it

)2 ≤ 1/γ20. No moment restrictions

needed. Hence just stationarity and ergodicity is suffi cient.

[9.2] If the additional "usual" (to be included) reg. conditions hold on information

and third derivatives - this implies that θ̂ can be reported with standard errors.

However, this does not include the LR test for γ = 0 (and t-statistics).

[9.3] When γ0 = 0, we need E
(
x4t−1

)
< ∞. This is not a further requirement as

under Ass. eXo xt is assumed Gaussian.

[9.4] The LR(γ = 0) is asymptotically "1
2
χ21" distributed. Mention e.g.: (a) αi0 > 0,

(b) well-known implications (e.g. 5% quantile is the 10% quantile of the χ21)

[10] Bootstrap:

[10.1] With ẑt = Ω̂
−1/2
t Yt the estimated residuals, set ẑct = ẑt − T−1

∑T
t=1 ẑt and

empiricalV (ẑct ) = T−1
∑T

t=1 ẑ
c
t ẑ
c′
t . Define the standardized residuals (explain

why this is needed)

ẑst = [empiricalV (ẑct )]
−1/2 ẑct .

A bootstrap-sample {Y ∗t } can then be constructed as e.g.

Y ∗t = (Ω∗t )
1/2 z∗t
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where z∗t are sampled from ẑst (wild, with replacement etc.), and

Ω∗t = D∗tΓ
∗D∗t .

Here, with θ̃ denoting the restricted estimator (explain why),

Γ∗ =

(
1 ρ̃

ρ̃ 1

)
and D∗t = diag (σ∗it)i=1,2 =

(
σ∗1t 0

0 σ∗2t

)
,

with

σ∗2it = ω̃i + α̃iy
2
it−1

The LR∗ statistic for γ = 0 is then computed. And as usual, this is repeated

say B = 399 times - more text can be added.

[10.2] A main issue is if α10 and α20 equal zero or not (when γ0 = 0) as this will

affect the limiting distribution.
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